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Bayesian Evolutionary Distance Agarwal & StatesAbstractThere is an inherent relationship between the process of pairwise sequence alignment andthe estimation of evolutionary distance. This relationship is explored and made explicit. As-suming an evolutionary model and given a speci�c pattern of observed base mismatches, therelative probabilities of evolution at each evolutionary distance are computed using a Bayesianframework. The mean or the median of this probability distribution provides a robust estimateof the central value. The evolutionary distance has traditionally been computed as zero for anobserved homology of 20 bases with no mismatches; we prove that it is highly probable that thedistance is greater than 0.01. The mean of the distribution is 0:047, which is a better estimateof the evolutionary distance.Bayesian estimates of the evolutionary distance incorporate arbitrary prior informationabout variable mutation rates both over time and along sequence position, thus requiring onlya weak form of the molecular-clock hypothesis.The endpoints of the similarity between genomic DNA sequences are often ambiguous. Theprobability of evolution at each evolutionary distance can be estimated over the entire set ofalignments by choosing the best alignment at each distance and the corresponding probability ofduplication at that evolutionary distance. A central value of this distribution provides a robustevolutionary distance estimate. We provide an e�cient algorithm for computing the parametricalignment, considering evolutionary distance as the only parameter.These techniques and estimates are used to infer the duplication history of the genomicsequence in C. elegans and in S. cerevisae. Our results indicate that repeats discovered using asingle scoring matrix show a considerable bias in subsequent evolutionary distance estimates.
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Bayesian Evolutionary Distance Agarwal & States1 IntroductionBiological sequences evolve by complex processes. The frequency of observed substitutions has beenused to estimate the number of mutations and the elapsed time since the divergence of the twosequences (Zuckerkandl and Pauling, 1965; Fitch and Margoliash, 1967). However, the relationshipbetween the time of divergence of two genes and the number of accepted mutations per site isnot linear. Furthermore, the extent of the region of sequence similarity is interrelated with theestimate of its evolutionary distance. These relationships are explored and made explicit in aBayesian framework capable of representing mutation rates that vary with both time and site.A number of methods have been proposed for estimating evolutionary distance in nucleotidesequences (Jukes and Cantor, 1969; Kimura, 1980; Tajima and Nei, 1984)1. They vary mainly inthe number of di�erent nucleotide pairs considered; the simplest model only counts the numberof matches and mismatches, while a more complex model distinguishes between transitions andtransversions, and others account for GC content (relative base frequencies).The Point Accepted Mutation (PAM) model is commonly employed for protein evolution (Day-ho� et al., 1979). It provides a series of scoring matrices (PAM1, PAM2, : : :, PAM500) optimizedto �nd protein homology at that speci�c evolutionary distance. PAM120 provides maximum sensi-tivity for identifying alignments with evolutionary distance 1:20. In general, PAMn is best suitedfor identifying alignments with evolutionary distance n=100. Using a Markov mutational model,similar matrices can also be derived for nucleotides (Fitch and Margoliash, 1967; States et al.,1991). M1 is an example of a mutational probability matrix for nucleotides, and the correspondingscoring matrix (PAM1) is S1 with the scores in bit units (assuming uniform base composition).M1 = ����������� a c g ta 0:99 0:002 0:006 0:002c 0:002 0:99 0:002 0:006g 0:006 0:002 0:99 0:002t 0:002 0:006 0:002 0:99 ����������� S1 = ����������� a c g ta 1:99 �6:97 �5:38 �6:97c �6:97 1:99 �6:97 �5:38g �5:38 �6:97 1:99 �6:97t �6:97 �5:38 �6:97 1:99 �����������The diagonal probabilities for the one point accepted mutation probability matrix (M1) are0:99. In this example, the probability of a transition (a$g and c$t = 0:006) is 3 times that of atransversion (a$c, a$t, c$g, and g$t = 0:002). The element in the ith row and jth column ofthis matrixMnij provide the probability of the nucleotide speci�ed in the ith row being substitutedby the one speci�ed in the jth column. These probability matrices are converted to symmetricallog odds score matrices, the PAM matrices for nucleotides, with scores Sij 's. The score for aligningbase i with base j at n PAM's is Snij , andSnij + Snji = log2 piMnijpipj + log2 pjMnjipjpipi is the probability of occurrence of base i. For the C. elegans sequence (pA = pT = 0:32 andpC = pG = 0:18). The scores are made symmetrical, because it is normally not possible to inferthe direction of evolution. Snij = Snji = 12 log2 MnijMnjipipj1See Gojobori et al.(1990) and Zharkikh (1994) for reviews.3



Bayesian Evolutionary Distance Agarwal & Statesaa||aa aaa|||aaaAlignment A Alignment BAlignment Probability of Probability of Relatedness Score Relatednessevolution chance observation Odds (bits) prob. densityA (0:99)2 = 0:98 (0:25)2 = 0:0625 (0:990:25)2 = 15:7 log2 15:7 = 3:97 15:715:7+62:1 = 0:2B (0:99)3 = 0:97 (0:25)3 = 0:0156 (0:990:25)3 = 62:1 log262:1 = 5:96 62:115:7+62:1 = 0:8Table 1: Computing the probability density of two sequence being related due to evolution atPAM 1. At PAM 1 there is 0.99 probability that a nucleotide remains unchanged. The probabilityof chance observation does not depend upon the PAM distance. This calculation considers twoalternative hypothesis: that either �aa� and �aa� are related or �aaa� and �aaa� are related. Notsurprisingly, the probability density favors the longer alignment (i.e. the one with 3 identities).The PAM matrices provide explicit probabilities of a sequence evolving from another sequenceat a particular evolutionary distance. These matrices are easy to compute, and can accommodatearbitrarily complex mutational models accounting for 12 independent mutational rates (6 if sym-metry is assumed, because it is usually not possible to infer the direction of evolution), along witharbitrary initial base compositions (3 parameters)2. Thus, these matrices can account for up to 15di�erent parameters3. Given all these parameters, closed-form solutions for distance estimates aredi�cult. However, using the PAM matrices, it is possible to numerically compute the score, as wellas the relative probability of the sequences being related due to evolution, at each distance.Most methods use the number of the scoring matrix that maximizes the alignment score toestimate the evolutionary distance between two sequences. This corresponds to the mode of theprobability distribution of the evolutionary distance. We propose using either the mean or themedian as a more robust estimate of the actual evolutionary distance.The probability of two sequences being related due to evolution with a speci�ed alignment canbe related to the score of that alignment. This is illustrated by considering two simple alignments.The alignments in table 1 provide two competing hypothesis that either �aa� is related to �aa�or �aaa� is related to �aaa�, i.e. an alignment with 2 identities or an alignment with 3 identities. Inthis simple case, clearly the alignment with the 3 identities is more signi�cant. However, some ofthe terminology and issues are clari�ed by this example, and the probability density quanti�es thenotion that the longer alignment is more signi�cant. Even though the probability of evolution of�aa' to �aa� is higher, the probability of �aaa� and �aaa� being related due to evolution is higher.This distinction between the probability of evolution and the probability density of two sequencebeing related due to evolution forms the basis of the PAM matrices (Dayho� et al., 1979). Thescore for a pair amino acids is computed as the log of the probability of the pair being related dueto evolution.The score of an alignment can be computed in standard units (for example, in bits) (Altschul,2The rows should sum to 1; thus there are 12 independent rates, not 16. The �nal base compositions are completelydetermined by the initial compositions and the PAM matrix.3Often, for inferring homology between portions of the same genome, 2 parameters are enough: the transi-tion/transversion ratio and the GC content. This assumes that the genomes have stable GC content.4



Bayesian Evolutionary Distance Agarwal & States1991). The score is computed from the log of the relatedness odds, because the log is taken to base2, the score units are bits. The probability density of two sequences being related is proportionalto the exponential of its score. Each extra bit of score implies that the log odd probability of thetwo sequence being related is twice as much. An alignment with a score of k extra bits has 2k timesmore information, and is 2k times more likely to be due to evolution (under the model).It is possible to compute the best alignment at each evolutionary distance and use the score ofthe alignment to compute the relative probability of evolution at that distance. Figure 1 displaysa sketch of the probability distribution associated with the sequence having been duplicated atvarious distances.In section 2, we explore these probability distributions for evolutionary distances, along with aBayesian framework that provides robust distance estimates, especially for short sequence homolo-gies.Current evolutionary distance estimates rely on a given �xed alignment. Although the endpointsof an alignment for homologous gene sequences can often be precisely determined (corresponding tothe endpoints of the gene), determining the precise endpoints for DNA sequences is often impossible,because there are several competing hypotheses regarding the extent of the duplication. We proposean estimate for evolutionary distance that considers the probability of duplication computed fromthe score of the best alignment at each distance. The estimate for the evolutionary distance shoulddepend upon the con�dence in the alignment, and in section 3 we suggest a solution.Homology is inferred by sequence comparison, which involves computing the probability ofevolution of the two sequences from a common ancestral sequence, given a particular evolutionmodel (Altschul et al., 1994). In most cases, only a single matrix (for example, PAM120 for aminoacids) is used to compute this probability. It has been suggested that the chances of detectinghomology could be improved by scoring with a few di�erent matrices for amino acids (for example,PAM 5; 30; 70; 120; 180, and 250) (Altschul, 1993). In section 4, we extend this idea to detectinghomology in nucleotide sequences. We show that for nucleotide comparisons it is unnecessary toselect some matrices. It is possible to score ungapped alignments at all evolutionary distances withonly a small computational overhead, for a class of matrices that we term well-decaying.4The three techniques of using the Bayesian evolutionary distance, considering alternative align-ments at various PAM distances, and computing the scores e�ciently for a range of PAM distancesall tie in together in estimating the duplication activity in a 3:66 Mb contiguous sequence fromC. elegans and in three chromosomes from S. cerevisae. The experimental results are discussed insection 5.2 Bayesian Evolutionary DistanceUnbiased estimates of the evolutionary distance (Tajima, 1993) are optimal in the asymptotic sensethat given S homologies with evolutionary distance d, the average of the estimated distance tendsto d, as S tends to in�nity. We suggest using Bayesian estimates instead of the current maximumlikelihood estimates. These estimates of evolutionary distance are asymptotically identical for longsequences (with the same choice of parameters), but the Bayesian estimates for short sequences arelarger.4We also show that for some other frequently used non well-decaying matrices, the errors in evolutionary distanceand score estimates are negligible in assuming the matrices to be well-decaying.5
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Bayesian Evolutionary Distance Agarwal & StatesGiven a homology of length n, we can evaluate the probability of observing k mismatches atevolutionary distance5 x = 0:01; 0:02; : : :M . Let P (kjx) (Pnk=0 P (kjx) = 1) be the probability ofobserving k mismatches given that evolutionary distance is x, and let P (xjk) be the probability ofevolutionary distance being x given that we observed k mismatches. From conditional probabilitiesor Bayes rule, we get: P (xjk) = P (kjx)P (x)P (k)We assume a uniform a priori distribution of the evolution distance, i.e. the homology is equallyprobable at each distance (in the set of distances D = 0:01; 0:02; : : :M). As Px2D P (x) = 1 )P (x) = 1100M 8x and given that: P (k) = Xx2DP (kjx)P (x)) P (k) = 1100M Xx2DP (kjx)) P (xjk) = P (kjx)Px2D P (kjx) (1)The mean and the median of the P (xjk) distribution provide robust estimates of the centralvalue. dmean(k; n) = E(xjk) = Xx2D xP (xjk)Figure 2 plots the probability P (xjk) of the evolutionary distance being x given that k mis-matches are observed. These plots assume that the four nucleotides are equally likely in thesequence and that all mutations are equally probable; however, using the probabilities derived fromthe PAM matrices, similar plots can be made for any mutation and nucleotide frequencies. ThePAM distances are assumed to be between 1 and 400 (corresponding to evolutionary distance 0:01and 4:00). The upper PAM limit arises from two considerations: theoretically, it may go back tothe existence of life on earth, but practically it is limited by the evolutionary relationships thatcan be discovered using sequence alignment techniques. The practical limit is upper bounded byPAM400.Notice that even though the plots in �gure 2 are unimodal for k < 3n=4, they are not sym-metrical about the mode; consequently, the mean is distinct from the mode. Furthermore, thedistributions for the longer sequences have lower variances, thus providing more reliable distanceestimates.For k � 3n=4, the alignments are not distinguishable from random alignments, and any evolu-tionary distance estimate based on such an alignment is questionable. The probability of evolution5It is possible to consider any speci�c discretization of the evolutionary distance. In this paper, evolutionarydistance increase in steps of 0.01 corresponding to 1 PAM.7
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Bayesian Evolutionary Distance Agarwal & Statesn= 20 n = 100 n = 500k/n dmean dTa dJC dmean dTa dJC dmean dTa dJC0.00 0.047 � 0.053 0 0.00 0.006 � 0.010 0 0.00 0.000 � 0.001 0 0.000.20 0.311 � 0.156 0.22 0.23 0.247 � 0.057 0.23 0.23 0.235 � 0.025 0.23 0.230.40 0.792 � 0.459 0.54 0.57 0.599 � 0.112 0.56 0.57 0.577 � 0.047 0.57 0.570.60 2.011 � 0.925 1.07 1.21 1.392 � 0.417 1.17 1.21 1.230 � 0.116 1.2 1.210.80 2.797 � 0.762 2.51 - 3.187 � 0.551 4.59 - 3.554 � 0.336 29.8 -1.00 3.098 � 0.618 60 - 3.519 � 0.365 1011 - 3.812 � 0.164 1060 -Table 2: The various distance estimates as a result of observing k mismatches in an alignment oflength n. The true distance is unknown. dmean: the expectation of the distribution of P (xjk) versusx, the standard deviation is derived from the same distribution; dJC : Jukes-Cantor distance; dTa:Tajima's unbiased estimate is equal to the mode of the distribution of P (xjk) versus x.between the �homologous� sequences increases monotonically with distance; thus the mean, mode,and median of the true distribution are all in�nite.The mean distance (dmean) depends upon the sample size (or the length of the homologoussequence). Therefore, an observation of zero mismatches in a homology of size 20 bases is bestcharacterized by distance estimate 0:05, while an observation of zero mismatches in a homologyof 100 bases provides a distance estimate of 0:006 (table 2). Not observing a substitution in ahomology of 20 bases is insu�cient evidence to conclude that the evolutionary distance is zero,but for a large homology of 500 bases with zero mismatches, the probability of the evolutionarydistance being signi�cantly greater than zero is in�nitesimal. This is a signi�cant di�erence betweenBayesian and other prevalent evolutionary distance estimates.The Jukes-Cantor (dJC = �34 log(1� 43 kn)) measure is computed using the fraction of observedmismatches (k=n). Thus, the estimated distance is the same for two pairs of sequences with 10%mismatch, irrespective of the lengths of the sequences (n). Moreover, as n!1, dJC ! dmean.Tajima (1993) has suggested using an unbiased estimate for the distance (dTa), which correctssome problems caused by the use of logarithms in the Jukes-Cantor distance. The Tajima estimatecorresponds to the mode of the distribution in equation 1. It varies with both the observed fractionof mismatches kn and n. However, for constant kn , increasing n increases dTa, which is contrary tothe relationship between n and dmean.dTa = kXi=1 1i (43)i�1 k!(k� i)! (n� i)!n!Table 2 displays the various distance estimates as a result of observing k mismatches in analignment of length n. For values of k < 3n=4, dmean � dTa � dJC . For k � 3n=4, dJC cannotbe computed, and the true dmean is in�nity; however, arti�cially limiting the PAM distances to beless than 400 provides �nite estimates for dmean. In any case, the utility of computing distanceestimates for alignments with greater than 75% mismatches is dubious.Other distances, as described by Kimura (1980) and Tajima and Nei (1984), account for di�erentsets of parameters. These depend mainly upon the observed relative frequencies of the varioussubstitutions, but do not consider the sample size n. There are also measures of similarity (and9



Bayesian Evolutionary Distance Agarwal & Statesevolutionary distance) of sequences, based on k-tuple composition, that do not require sequencealignment (Blaisdell, 1986).Variable rates of substitutionThe molecular-clock hypothesis has been frequently criticized for its dependence on a uniformmutation model (Wilbur, 1985). The Bayesian method can be readily extended to account forvariable rates of substitution at di�erent sites or at di�erent time periods. Altschul (1991) hasobserved that all scoring matrices can be normalized to provide scores in bits. This technique isessential to combining scores from di�erent matrices. The site for each base can be scored witha di�erent scoring matrix, and the probability of the aligned pair of bases being related due toevolution at any evolutionary distance can be computed. The probability of two sequences beingrelated due to evolution is the product of the probabilities for each base assuming that the sitesevolve independently. (This is similar to the scoring used for sequence alignments.) These relativeprobabilities of evolution at each evolutionary distance can then be used to compute either themean or the median evolutionary distance. Thus, this method can be employed to incorporatehigher mutation rates at the silent codon sites and non-transcribed regions; furthermore, it canamalgamate information from genes with di�erent mutation rates.6Information about variable mutation rates over time may also be incorporated into the scoringmatrices. This is achieved by remapping the matrices to the evolutionary distances. We illustratethis by a simple example. Assume that the normal mutation rates are such that the PAM1 isabout a million years ago (in other words, the mutation rate is 10�8 per base per year). Letus also assume that the mutation rates were twice as high between 50 and 60 million years ago.Thus, for time period n � 50 million years, the corresponding matrix is PAMn, and the distanceis n=100, but for 50 < n � 60 the corresponding scoring matrix is PAM (n + (n � 50)), and thedistance is (2n� 50)=100. Therefore, information about variable mutation rates over time is easilyincorporated by renumbering the PAM matrices. The various rates of evolution at di�erent sitesand time periods are taken as priors and not estimated from the limited data set.This provides a technique for an overall estimation of the evolutionary distance between largesections of genomes (or even entire genomes) where di�erent regions of the genome might have haddi�erent rates of evolution.Prior probabilityPrior information about the probability of the evolution for certain time periods can be directlyincluded as the prior probability in the Bayesian computation (which is assumed to be uniform in theabsence of any other evidence). An example of a sources of this prior information is paleontology;another one is punctuated evolution with high probability of evolution associated with the speciationtime periods. In addition, knowledge about the time period of divergence may be used to limit therange of considered PAM's.6Other techniques for considering variable rates of mutation over sites have also been proposed (Yang, 1994).10



Bayesian Evolutionary Distance Agarwal & States3 Uncertainty in Sequence AlignmentsIn general, the precise evolutionary origins of sequences are not known, and there are multiplehypotheses regarding the possible alignment of two sequences. Alignments frequently vary with thechoice of the parameters. Parametric sequence alignment is a technique for e�ciently discoveringthe highest scoring alignment over a range of values for a set of parameters. The most commonparameters are the match-mismatch scores and gap opening-continuing penalties (Fitch and Smith,1983; Waterman et al., 1992; Waterman, 1994; Vingron and Waterman, 1994; Tillier, 1994; Gus�eldet al., 1994). The regions having identical scores in this alignment space are convex polygonsand can be discovered e�ciently (in constant time per region). However, the number of regionsis O(n3) for local alignments on sequences of length n. The maximum likelihood alignment ofDNA sequences over a range of parameters has also been considered (Bishop and Thompson,1986; Thorne et al., 1991; Thorne et al., 1992; Allison et al., 1992). In addition to providing theoptimal alignment, they provide estimates of the evolutionary parameters. The maximum likelihoodalignment requires searching the multi-dimensional likelihood surface for the maximum, which isan expensive numerical computation.Analysis of suboptimal alignments has revealed that often homologous sequences have numerousalignments with scores close to the maximum score, making it impossible to determine the truealignment by considering only the scores (Saqi and Sternberg, 1991; Zuker, 1991).Most current evolutionary distance estimates rely on a true alignment. In the absence of priorknowledge about which alignment is correct, we consider the relative probability of each alignmentbeing correct. These probabilities may be utilized to estimate a mean for a number of parameters,including the evolutionary distance and the number of substitutions of a speci�c type. In particular,the mean evolutionary distance is a weighted sum of the evolutionary distances. The weightscorrespond to the probability of the best alignment at each distance. Instead of considering onlythe best alignment at each distance, one could consider all the possible suboptimal alignmentsat each distance. However, the advantage of the additional computation (because there are anexponential number of gapped alignments and a cubic number of ungapped alignments) is notevident.The previous section discussed a technique for estimating the probabilities of evolution overa range of evolutionary distances given a speci�c ungapped alignment. We extend the techniqueto considering di�erent alignments at each distance. We also provide an algorithm for e�cientlycomputing the best alignment at every distance.Consider an example of similar sequence fragments from the C. elegans cosmid C30C117 ato�sets 30272 and 8522 respectively. There are two hypotheses regarding their duplication (table 3).� Alignment A: There was a short duplication of 25 nucleotides with 2 observed mismatches.� Alignment B: There was a longer duplication of 45 bases with 11 observed mismatches.Alignment A is the �rst 25 bases of alignment B. The two alignments were discovered using PAMmatrices, with a transition to transversion ratio of 1.5 and assuming a stable GC content of theC. elegans genome (35.7%). Figure 3 contains plots of the scores and corresponding probabilitiesof the two alignments as a function of the evolutionary distances. Sequence homologies are often7Genbank Accession L09634 L18807 11
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Figure 3: The variation of the scores of two possible alignments as a function of the evolutionarydistance. Alignment A is optimal (higher-scoring and thus a higher probability of being relateddue to evolution) below PAM19, while B is optimal beyond PAM19. The last column in the tablehas the evolutionary distances estimated by considering the better alignment of A and B at eachdistance. The probabilities curves are normalized to have unit area under them.
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Bayesian Evolutionary Distance Agarwal & Statestacagtactcgttaaaggcgcacac|||||||||| |||||||||||||tacagtactctctaaaggcgcacacAlignment Atacagtactcgttaaaggcgcacacccgtttgtatttaacgataa|||||||||| ||||||||||||| | |||| ||| | ||tacagtactctctaaaggcgcacactttctcttattcaacaaaaaAlignment BMethod Alignment A Alignment B Best alignment at each distancedJC 0.085 0.296 0.207dmean 0.132 0.332 0.243Table 3: Alignment averaging: Computing the mean distance over two possible alignments. Theprobability of each evolutionary distance (P (xjk)) is estimated as the exponential of the score ofthe best alignment using a PAMx scoring matrix. The same probabilities are used for the twodistance estimates. The distance estimate for Jukes-Cantor is a step function that changes from0:085 for alignment A to 0:296 for alignment B at � PAM19.found using a single scoring matrix (+5;�4)8 corresponding to approximately PAM47. The PAM47matrix would identify alignment B as it scores higher at PAM47. Notice that the score is nothighest at PAM47, and a bias regarding the evolutionary distance is introduced as a result ofconducting the search utilizing a speci�c scoring matrix. Thus, most single matrix searches wouldfail to identify alignment A (whose score at PAM8 is the highest). Consequently, the evolutionarydistance estimate would be based only on alignment B. Our proposed method determines the bestalignment (with its probability) at each PAM, and computes the expected PAM from its probabilitydistribution (as illustrated in �gure 3 and table 3).The extent of an ungapped sequence alignment often changes if it is scored with matricescorresponding to distinct evolutionary distances. The frequency of these changes is plotted in�gure 4. The mean of the number of di�erent ungapped alignments observed is approximately 4when the search is conducted with matrices from PAM1 to 120. Thus, a search at a single PAMwould have failed to evaluate more than 75% of the ungapped alignments identi�ed at other PAM's,many of which contribute signi�cantly to the evolutionary distance estimates.We have demonstrated a technique to account for uncertainty in the alignment. The alignmentswe have considered are ungapped (no insertions or deletions). However, the same technique canbe used for gapped alignments provided we can estimate the evolutionary distance for the variousalignments as well as estimate the probability of each of those alignments being correct.8The matches are scored as +5 and the mismatches scored as �4. This is the default scoring in BLASTN 1.4.8(Altschul et al., 1990). 13
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Bayesian Evolutionary Distance Agarwal & Statesgrows approximately as logN (because the number of distinct alignment lengths grows as logN).The array of scoring matrices most often used for nucleotide comparisons are the PAMmatrices.The PAM number increases monotonically with increasing evolutionary distance.We consider local alignments without gaps (no insertions or deletions), similar to the alignmentsproduced by BLAST (Altschul et al., 1990). These alignments are simply obtained by walking alonga single diagonal of the dynamic programming matrix. An alignment is maximal for a given scoringmatrix if no extension on either side can increase its score. Every pre�x and su�x of a maximalalignment has a positive score. Otherwise, the alignment minus that pre�x or su�x has either ahigher score or the same score (but is shorter) than the complete alignment; thus the completealignment is no longer maximal. To prove that an alignment of length L is maximal, it is su�cientto consider all extensions on either side until the score falls below zero. The length of this possibleextension in the worst case can be the length of the sequence (n). However, for �nding repeatsin large genomic sequences, L � n, and the average extension required is much lower than n (itis about O(L)). For the remainder of this section, we assume that given a speci�c diagonal andscoring matrix, a maximal ungapped alignment can be computed in time O(L).Lemma 1 The maximum score, using a range of N scoring matrices, can be discovered in O(LN)time.Proof: Trivially, each scoring matrix can be treated independently and the alignment rescored.Lemma 2 If the length of the alignment (L) is �xed over a range of (N) scoring matrices, thenthe maximum score obtained by using any of those matrices can be discovered in O(L+logN) time.Proof: The score as a function of PAM has a single maxima; thus a modi�ed binary search willyield the maxima. The binary search is modi�ed to check if the middle element is locally maximal,and it is only initiated if the score (S) is minimal at both ends, i.e. S[1] < S[2] and S[N ] < S[N�1].We can preprocess the alignment length (O(L)) to count the number of each type of substitution,and �ll out a substitution-count matrix. The alignment score (for a given scoring matrix) canbe computed in constant time by evaluating a dot product of the substitution-count matrix andscoring matrix.Consider the scoring matrix at evolutionary time t, composed of some non-negative scoringentries fp 2 Pg with scores sp � 0, and negative scoring entries fn 2 Ng with scores sn < 0. Withincreasing evolutionary distance, the positive scores decay towards zero, and the negative scoresrise towards zero (possibly rising beyond it). The class of scoring matrices for which equation 2holds are termed well-decaying 11. This class includes the Jukes-Cantor matrices.maxn2N sn(d+ 1)sn(d) < minp2P sp(d+ 1)sp(d) (2)Lemma 3 For a well-decaying set of matrices, if an alignment has a non-positive score at distanced+1, then it has a non-positive score at distance d. (Intuitively, matrices at higher PAM's are moretolerant of mismatches.)this assumption.11In addition, for well-decaying matrices, s(d) > 0) s(d+ 1) > 0.15



Bayesian Evolutionary Distance Agarwal & StatesProof: Let the alignment score at evolutionary distance d be S(d) and at distance d+1 be S(d+1).S(d) = Xp2P cpsp(d) + Xn2N cnsn(d)where ci is the count of the number of base pairs in the alignment scoring si.For well-decaying matrices: maxn2N sn(d+ 1)sn(d) < minp2P sp(d+ 1)sp(d)Let n0 2 N and p0 2 P be such that,8fn 2 Ngsn(d+ 1)sn(d) � sn0(d+ 1)sn0(d) < sp0(d+ 1)sp0(d) � 8fp 2 Pgsp(d+ 1)sp(d)sp(d)sn0(d+ 1)sn0(d) � sp(d+ 1) (3)sn(d)sn0(d+ 1)sn0(d) � sn(d+ 1) (4)S(d+ 1) = Xp2P cpsp(d+ 1) + Xn2N cnsn(d+ 1) � 0The sets P and N do not change from d to d + 1. The scores that change from negative topositive from PAM d to PAM d + 1 increase the score of an alignment (S(d) < S(d + 1)), andthus we can eliminate them from consideration in this lemma. Furthermore, scores changing frompositive to negative with increasing PAM are not permitted for well-decaying matrices.Substituting from equations 3 and 4:)Xp2P cpsp(d)sn0(d+ 1)sn0(d) + Xn2N cnsn(d+ 1)sn0(d+ 1)sn0(d) � S(d+ 1) � 0) sn0(d+ 1)sn0(d) (Xp2P cpsp(d) + Xn2N cnsn(d)) � 0As sn0(d+ 1)=sn0(d) > 0 ) cp0sp0(d) + cn0sn0(d) � 0) S(d) � 0Theorem 1 The maximal alignment length is a non-decreasing function of evolutionary distancefor well-decaying scoring matrices. 16
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Figure 5: Alignment length increases with evolutionary distance. (a) Alignment (A1) for evolution-ary distance d. (b) The alignment (A2) for evolutionary distance d + 1 must not be smaller thanA1.Proof by contradiction: Consider �gure 5. The maximal alignment at evolutionary distance d isA1 and at distance d+1 is A2. For the alignment length to decrease with increasing distance thereis a piece (P) of the alignment that is part of A1 and not part of A2 (the alignments in the �gurewould need to be relabeled). The score of the piece, P, at d must be positive; otherwise, A1 is nota maximal alignment, as we can increase or maintain its score by dropping P from the alignment.This P must score non-positively at d + 1; otherwise, A2 is not maximal, as we can increase itsscore by adding P to the alignment. Thus, P is an alignment by itself, which scores positively atd and non-positively at d+ 1, contradicting lemma 3.For well-decaying scoring matrices, the maximum score can be obtained in O(N + I(L +log(N=I))) computational time, where I is the number of di�erent alignment lengths over therange of scoring matrices. (0 < I � N , but empirically I � logN , see �gure 4). This time boundfollows from lemma 2 and the observation that it is most expensive to compute all the boundaries atwhich the alignment length changes, when these changes are spaced equally (N=I scoring matrices)apart.5 Experimental resultsWe have empirically evaluated the e�ciency of searching using well-decaying matrices.� The Jukes-Cantor PAM scoring matrix series is well-decaying. These matrices assume equalprobability of mutation to any other base. They also assume that all the bases are equallylikely.� The bounds obtained in the previous section are asymptotic. Given that the number of ma-trices is limited, the bound is only useful if the constants involved are small, which is the caseas even a simple implementation of searching using matrices with the well-decaying propertyprovides a four-fold increase in speed over searching with each of the matrices independently.� Introducing an unequal transition-transversion rate or accounting for GC content makes theset of matrices not well-decaying beyond a certain evolutionary distance.17



Bayesian Evolutionary Distance Agarwal & StatesData # alignments Score (in bits at best PAM) Best PAM Mean PAMRoot Mean Square ErrorYeast 38489 8:0� 10�6 0.0002 0.0001Elegans 102023 4:0� 10�5 0.0002 0.0001Relative Root Mean Square ErrorYeast 38489 2:1� 10�9 4:4� 10�6 4:8� 10�6Elegans 102023 7:7� 10�9 8:9� 10�6 4:8� 10�6Maximum ErrorYeast 38489 0.29 2 3Elegans 102023 1.85 5 4Table 4: The various error rates as a result of assuming matrices to be well-decaying. The relativeerrors are obtained from the squared di�erences scaled by the datum value.� Treating the matrices that have unequal transition-transversion rate and/or account for GCcontent as well-decaying rarely causes appreciable errors in the score estimates.We constructed the PAM scoring matrices using a transition to transversion ratio of 1:5and the GC content (35:7%) of the C. elegans subset. These matrices are not well-decayingbeyond 80 PAM's. We discovered repetitive sequence motifs using all these matrices. However,only 0:5% of the repeats had alignments that decreased in length with increasing PAM. Thedistance estimates of these alignments are a�ected only when the alignments have equallengths at two di�erent PAM's and the length changes in between these two PAM's. Table 4provides estimates of the errors that were caused by assuming the matrices to be well-decaying.These errors are both small and rare enough to be ignored. For comparison, table 4 alsoincludes data from the S. cerevisae subset.12Estimating duplication history in C. elegans and S. cerevisaeThe techniques of Bayesian evolutionary distance estimation, incorporating uncertain sequencealignments, and e�cient search using an array of matrices have been utilized to study the prolifera-tion of repetitive sequence and motifs in the C. elegans and S. cerevisae genomes. All the repetitivesequences discovered are categorized according to the mean evolutionary distance estimated, con-sidering the uncertainty in the sequence alignments. The cumulative score is plotted against theevolutionary distance in �gure 6 for the C. elegans data. The plot shows a linear increase in thetotal amount of repetitive sequence between PAM1 and approximately PAM40. This suggests thatgenomic duplications have been taking place at an uniform rate over recent time. The number ofrepeats discovered beyond 40 PAM's decays gradually (1994).The e�ects of conducting a search utilizing a single (+5;�4) PAM47 scoring matrix, as opposedto utilizing an entire series, are illustrated in �gure 7. The loss of sensitivity, in terms of thetotal bit score of all the signi�cant duplications observed, is 9:6% in C. elegans and 12:1% for12The GC content of S. cerevisae data was 38:5%; therefore, the matrices were quite similar to that produced forC. elegans. 18
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PAM distanceFigure 6: The amount of duplication plotted against the mean evolutionary distance for C. elegans.S. cerevisae13. Furthermore, disconcerting discrepancies are observed in the evolutionary distanceestimates. Repeats at certain evolutionary distances show a marked increase; at other distancesthey show a clear decline. The general trend shows a decline in the repeats found at the ends of thescale (low and high PAM's). Some of this decline is easily explained by the reduced sensitivity ofthe (+5;�4) scoring matrix at low (< 20) and high (> 70) PAM's. The PAM47 matrix is less than90% e�cient below PAM20 and above PAM68 (States et al., 1991). The apparent high e�ciency(> 100%) observed at the PAM's close to 47 exposes a serious �aw. The PAM47 search is notdiscovering repeats that the All-PAM search failed to identify; it is only classifying them into thewrong PAM. If there are repeats with two di�erent alignments at PAM47 and an extreme PAM,the PAM47 search identi�es only the �rst alignment even if it scores much lower, leading to anincorrect estimation of evolutionary distance. Thus, the extent of the repeat that was discoveredby (+5;�4) matrix was incorrect, and any subsequent determination of the evolutionary distancewill be incorrect14.6 DiscussionAmino acidsThe Bayesian estimates described in this paper can be readily extended to amino acid sequences,and the mean or median of the distribution utilized as an estimate. For amino acids sequences,ambiguity in the end points of the homology is unusual; thus the utility of the technique forconsidering possibly di�erent alignments at each evolutionary distance is marginal.The scoring technique employing multiple matrices discussed in section 4 is not as useful foramino acid sequences. There are 20 amino acids, and a substitution-count matrix has 205 entries.Often, counting all the mismatches at each PAM does not compare favorably to the length ofthe alignment (which is frequently less than 205). Thus, there would be little or no saving incomputational time even if the PAM matrices were well-decaying. As it turns out, the PAM13Details regarding the evaluation of signi�cance for a repeat are provided by Agarwal and States (1994).14Some of the di�erences in the plots at high PAM's, especially for S. cerevisae, are explained by regions withbiased (high) GC content. 19
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Figure 7: Amount of duplication plotted against evolutionary distance. The All-PAM plot is froma search using all the PAM matrices from 1 to 120. The PAM47 plot only includes repeats foundusing a PAM47 (+5;�4). These sets of alignments correspond to the set of repeats in a 3:66 Mbcontiguous sequence from C. elegans and chromosomes III, VIII, and XI (1:54Mb) from S. cerevisae.The lower plots demonstrate the e�ciency of the search at PAM47. E�ciency is measured by theamount of duplication found at PAM47 divided by the amount of duplication found by the All-PAMsearch. The lower plots have been smoothed by plotting a moving average over 15 PAM's.
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Bayesian Evolutionary Distance Agarwal & Statesmatrices for amino acids are well-decaying only until PAM50, and the BLOSUM series is notwell-decaying at all.Mutational modelThe Bayesian approach to evolutionary distance estimation relies on a mutational model. How-ever, this mutational model may vary between sites and over time. We could incorporate moreprecise mutational models that use dinucleotide or codon mutation rates. The maximum likelihoodapproach of Allison et al. (1992), Bishop and Thompson (1986), and Thorne et al. (1991; 1992)estimate both the best model and evolutionary distance; while the Bayesian estimate requires amutation model at every base position. The advantage of the Bayesian approach is the savings incomputational time, rendering it practical.Insertion/deletion eventsThe extension of these techniques to alignments with insertion/deletion events require associatinga probabilty with an insertion/deletion at each evolutionary distance. It is obvious that the prob-ability of an insertion/deletion should increase with increasing evolutionary distance. However,the dependence of the length of the insertion/deletion on the evolutionary distance is less certain.There appears to be no simple and correct way to associate probabilities with insertion/deletionevents. Nevertheless, given the probabilities for gaps in alignments, they can be incorporated rathereasily into the probability of evolution of one sequence from another at a given evolutionary dis-tance. Furthermore, the best alignment can be found at each distance and the mean evolutionarydistance estimated. It is computationally more expensive to discover the best gapped-alignment foreach evolutionary distance; the cost is O(NL2) using N scoring matrices for two sequences, each oflength L.Statistical signi�canceAltschul (1993) has proposed an empirical correction factor for estimating the statistical signi�canceof similarities discovered using the All-PAM scoring system. Their proposed correction factor is forthe score of the best alignment discovered.A question that arises is if we consider the mean score of all the alignments (lower than thebest score) � is a correction factor still required, and if so what should be its magnitude?AcknowledgmentsWe would like to thank Marcus B. Feldman and Michael Zuker for many useful discussions, StanleySawyer for comments on a draft version, an anonymous referee for many excellent suggestions,and Laureen C. Treacy for her dedicated proofreading. This work was supported in part by theDepartment of Energy (DOE) grant DE-FG02-94ER61910.ReferencesAgarwal, P. and States, D. (1994). The Repeat Pattern Toolkit (RPT): Analyzing the structureand evolution of the C: elegans genome. In Altman, R., Brutlag, D., Karp, P., Lathrop, R.,21
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